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ABSTRACT 

REPRODUCTIVE PERFORMANCE, FORAGING EFFORT, AND DIET OF AN 

APEX PREDATOR, THE COMMON MURRE, AT ONE OF THE LARGEST 

NESTING COLONIES IN THE CALIFORNIA CURRENT SYSTEM 

 

by Stephanie R. Schneider 

Common Murre (Uria aalge) are the most abundant avian apex predator nesting in 

the California Current System (CCS) and nesting is the most energetically demanding 

phase of their lifecycle. The preyscape within flight distance of their nesting colony 

determines whether murres produce young, how hard they must work to do so, and what 

prey types are available to them. This study characterized the reproductive performance, 

foraging effort, and prey composition of murres nesting at a previously unstudied and 

large nesting colony in the CCS, Castle Rock National Wildlife Refuge, over an 11-year 

period (2007 - 2017) intended to capture a representative range of prey conditions. 

Timing of upwelling, coincident with seasonal increase in prey, accounted for 70% of the 

variability in nest initiation by murres. Reproductive success averaged 61% and, even in 

the most successful years, murres approached their behavioral limit to increase foraging 

effort and obtain adequate prey; crossing this threshold resulted in chicks being left 

unattended and widespread nest failure in 3 study years (2007, 2016, and 2017). Smelt 

and rockfish dominated the diet in good years and anchovy dominated in bad years. Prey 

available to murres nesting at this large colony closely matched the amount of prey 

required for them to produce young and, based on current conditions, even small shifts 

causing demand to exceed availability could result in large-scale reproductive failure of 

murres as well as other seabirds nesting here.  
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INTRODUCTION 

Apex predators, organisms that forage at the top of the food web, play a crucial role 

in maintaining the balance of food webs by keeping prey populations in check (Heithaus 

et al. 2008; Terborgh and Estes 2010). To survive and reproduce, however, they require 

an abundance of energy in the form of prey. Because there is inefficiency in the transfer 

of energy from one trophic level to the next, only highly productive and/or large 

ecosystems contain adequate prey to sustain predator populations (Lindeman 1942; Block 

et al. 2011; Scales et al. 2014; Young et al. 2015). In the ocean, the most productive areas 

are eastern boundary currents (GLOBEC 1992), such as the California Current System 

(CCS), which are characterized by wind-driven upwelling of nutrient-rich water (Hickey 

1998). These productive regions attract marine predators throughout their annual cycle 

(Block et al. 2011). Although these upwelling zones are productive, the variability in the 

strength and timing of seasonal winds cause order-of-magnitude differences in their 

primary productivity (McGowan et al. 1998; Chavez and Messié 2009). This variability 

permeates through the food web, resulting in dramatic fluctuations of the abundance and 

composition of prey (Croll et al. 2005; Frederiksen et al. 2006). Marine predators must be 

able to cope with this variable preyscape. Understanding the mechanisms by which 

predators cope with this variability, and the limits of their ability to compensate, provides 

insight into their resiliency to withstand a changing marine system (Piatt et al. 2007; 

Frederiksen and Haug 2015; Young et al. 2015; Keogan et al. 2018).  

Seabirds are unique marine predators whose nesting phenology, reproductive success, 

foraging effort and diet depends on, and rapidly reflects, the abundance and composition 
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of prey in the marine environment (Montevecchi 1993; Diamond and Devlin 2003; 

Frederiksen et al. 2007; Piatt et al. 2007; Einoder 2009). The breeding season is the most 

energetically demanding part of the seabird lifecycle (Schreiber and Burger 2001; 

Watanuki et al. 2009), and sufficient prey is critical to a successful outcome (Scott et al. 

2006; Cury et al. 2011). One mechanism by which many birds ensure that energy will be 

available to meet demands is to time nesting to coincide with the peak availability of prey 

(Shultz et al. 2009; Votier et al. 2009; Watanuki et al. 2009; Thackeray et al. 2010; Gilg 

et al. 2012); in the CCS, this occurs following the onset of upwelling in spring. Once 

nesting initiates, seabirds must remain within flight distance of their breeding colony to 

incubate eggs and feed chicks such that areas accessible for foraging are drastically 

reduced relative to non-breeding periods due to this shift to central-place foraging (Orians 

and Pearson 1979). For the duration of nesting, seabirds are entirely reliant on the prey 

available within flight distance of their breeding colonies to meet the needs of themselves 

and their young (Birt et al. 1987). To maintain adequate provisioning despite localized 

variability in the preyscape during this time, seabirds must modify their foraging effort 

and prey choice to compensate (Lewis et al. 2001; Burke and Montevecchi 2009; 

Pichegru et al. 2010), minimizing effort when prey are readily available and maximizing 

effort when prey become difficult to acquire. Thus, the prey community within flight 

distance of breeding colonies determines when seabirds should initiate nesting, if seabirds 

can meet the energetic needs of their young, how hard they must work to do so, and what 

prey types they can find.  
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The most abundant seabird nesting in the CCS is the Common Murre (Uria aalge; 

hereafter murre), a piscivorous pursuit diver. Changes in the population size of murres 

are slow to reflect sub-lethal reductions in marine productivity since they can survive for 

decades without reproducing (Diamond and Devlin 2003; Ainley and Hyrenbach 2010). 

In contrast, murre reproductive performance, foraging effort, and diet reflect variability in 

the local prey community in the span of days and weeks (Ainley et al. 1996; Diamond 

and Devlin 2003; Schrimpf et al. 2012; Gladics et al. 2014). Murres typically fledge 

young even in years when prey are relatively scarce (Boekelheide et al. 1990). They 

compensate for reductions in prey by increasing their foraging effort (Burger and Piatt 

1990; Harding et al. 2007); when prey are abundant, chick-rearing murres spend up to 

40% of their day together at the colony but, as prey become scarce, time spent at the 

colony is traded for time searching for prey so that chicks are adequately fed. Although 

rare, during periods of extreme prey scarcity, murres have been observed to leave chicks 

unattended at the colony while both members of a chick-rearing pair search for prey 

(Ainley et al. 2002; Ashbrook et al. 2008; Eigner 2009).  

Common murre are easily observed at the colony, are diurnally active, and deliver 

whole prey to their chick. Therefore, colony-based surveys are an effective method to 

quantify their reproductive performance, time-allocation, and the composition of prey fed 

to chicks. These metrics are essential to identify the mechanisms that underly changes in 

abundance, gain insights into seabird population health, and facilitate development of a 

baseline characterization of the seabird prey community from which to detect future 

change (Diamond and Devlin 2003; Einoder 2009; Gaston et al. 2009). Colony-based 
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studies of murres can also provide insights into whether behavioral flexibility exists, both 

among and within individuals, and determine the consequence for reproductive success 

(Bolnick et al. 2003; Grémillet and Charmantier 2010). 

The most comprehensive colony-based studies of murres nesting in the CCS are from 

the Farallon Islands (1971-2018), a major seabird colony in central California 

(Boekelheide et al. 1990). It is often assumed that observations from the Farallon Islands 

are generalizable to a broader oceanographic region, inclusive of Castle Rock in northern 

California, due to oceanographic similarities (GLOBEC 1992; Batchhelder et al. 2002; 

Tynan et al. 2005; Roth et al. 2008; Bjorkstedt et al. 2012). However, there is mounting 

evidence that marine productivity is not homogenous across this region of the CCS 

(Barth et al. 2005; Huyer et al. 2005; Reese and Brodeur 2006; Bograd et al. 2009). 

Castle Rock provided nesting habitat for more than 10% of murres nesting in the CCS at 

the time of the last state-wide seabird count in California (Carter et al. 1992) and has 

continued to increase at an average rate of 5% annually since then (Barton et al. 2017). 

Despite its importance to murres nesting in the CCS, Castle Rock has received little 

attention beyond intermittent aerial censuses to estimate the number of nesting adults 

beyond this current project (Jaques 2007; USFWS 2009). Furthermore, long-term seabird 

studies within a 300 km radius of Castle Rock have not previously occurred, with the 

nearest long-term studies at the Farallon Islands to the south and Yaquina Head to the 

north. If differences exist across the CCS, long-term measures of reproductive 

performance and foraging effort in this region will provide information needed to assess 

population-level dynamics and the resiliency of murres to withstand environmental 
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change across the CCS (Satterthwaite et al. 2012; Oro 2014; Frederiksen and Haug 

2015). 

Herein, I characterize murre reproductive performance, foraging effort, and prey 

composition of Common Murres nesting at Castle Rock National Wildlife Refuge using 

an 11-year time series (2007 - 2017) with the intention of capturing a representative range 

of prey conditions. Measures of reproductive performance included the phenology of nest 

initiation and the success of those nests. Since reproduction is often timed to match peak 

availability of prey, the timing of nest initiation by murres at Castle Rock was predicted 

to vary as a function of the seasonal onset of upwelling. Since murres are known to nest 

successfully across a wide spectrum of marine conditions, murres nesting at Castle Rock 

were predicted to be consistently successful except in years when prey accessible from 

the colony were too scarce for individuals to maintain adequate provisioning. During the 

chick-rearing period, murres must capture adequate prey each day to keep themselves and 

their chick alive and, therefore, fluctuations in the ease of finding prey should be 

reflected by a suite of metrics that relate to foraging effort. For years in which prey were 

difficult to acquire, I predicted that chick-rearing pairs would minimize time spent 

together at the colony (co-attendance), leave chicks alone at the colony to maximize time 

searching for prey, increase the duration of foraging trips, experience lower success of 

chick-provisioning trips, and feed chicks fewer times per day relative to years when prey 

were easy to acquire. Finally, prey fed to chicks were identified to assess the composition 

and stability of the prey community over the study period. Although prior knowledge 

about murre diet in this area of the CCS is limited, recent studies indicate that the 
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physical environment of the CCS may exhibit greater latitudinal heterogeneity than 

previously thought and, as such, the prey community near Castle may be distinct from 

other well-studied regions of the CCS. 

  



7 

 

METHODS 

Study Area 

Castle Rock is a 6.82-hectare island (Del Norte County Assessor’s Office 1954, 1967) 

located in the CCS approximately 0.8 km offshore from Crescent City, CA (Figure 1; 41o 

43´37´´N, 124 o15´00´´W). Castle Rock provides nesting habitat to all 11 seabird species 

that nest in this region of the CCS (Carter et al. 1992; Jaques 2007) and, based on the 

1989 statewide seabird census, supports a significant percentage of seabirds nesting in 

California (Carter et al. 1992). To minimize disturbance to seabirds while they nest at 

Castle Rock, a video-based monitoring system (SeeMore Wildlife Systems Inc., Homer, 

Alaska) with two visible-light video cameras capable of real-time panoramic scanning 

(360o), tilting (120o), zooming, and auto-focusing were installed on the island in 2006 

near the top of a rocky slope on the north side of the island (Cunha et al. 2008). Except 

for being a localized site with good visibility, the location of the camera system was 

randomly selected and does not contain unique habitat features that would enhance or 

diminish reproductive efforts of seabirds. As such, it is assumed that observations of 

seabirds within the vicinity of the monitoring system provide a representative sample of 

the entire colony. All video of the island, including surveys, were recorded at high 

resolution (29 frames per second at a resolution of 720x480 pixels) and hard drives were 

archived at Humboldt State University. All research at Castle Rock associated with this 

video-based monitoring system has been approved by Humboldt State University’s 

IACUC (Protocol #’s: 05/06.W.70.A, 08/09.W.54.A, 11/12.W.88-E, 15/16.W.01-E) and 

recognized by San Jose State University’s IACUC (Protocol #: AAA-10). 
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(A)            (B) 

 
 

Figure 1. (A) Location of Castle Rock National Wildlife Refuge (yellow dot) with 

maximum foraging range (100 km;(Ainley et al. 2002; Piatt, Harding, M.T. Shultz, et al. 

2007) for Common Murres nesting at this colony (yellow line) and (B) bathymetric 

profile of the 100 km foraging range with the maximum diving range of murres (0 - 200 

m;(Piatt and Nettleship 1985; Hedd et al. 2009; Regular et al. 2011) bounded by the red 

lines.  

 

Colony-based Surveys 

 Surveys were conducted to assess: the timing of nesting and reproductive success 

(nest surveys), murre foraging effort and chick provisioning rates (time-allocation 

surveys), and prey community composition (diet surveys) during each breeding season 

between 2007 and 2017. To ensure validity of interannual and cross-colony comparisons, 

all surveys followed specific protocols that approximated methods used at other breeding 

colonies in the CCS (Boekelheide et al. 1990; Suryan et al. 2014; Fuller et al. 2015).  
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Nest Surveys 

 Nest surveys were used to quantify the timing of nest initiation, the overall success of 

nests, and identify causes of failure. Nests included in these surveys were near the 

monitoring system because it was necessary to make detailed observations of breeding 

pairs, eggs, and chicks. In 2007 and 2008, all nests (~60) within a 25 m2 area were 

observed and, in 2009, this area was doubled to include more nests (~120). To ensure 

accurate identification of each nest, still-images of the survey area were generated, and 

each site was labeled with a unique number. These surveys required a remote observer to 

move the cameras to view each nest and determine if an egg or chick was present. 

Observations began prior to nest initiation and continued every other day until all nesting 

attempts were completed.  

 Murres lay a single egg on bare ground, and nesting is initiated with the laying of this 

egg. The overall success of nests is defined as the number of nests initiated that 

successfully fledged young. There are two components that contribute to overall nesting 

success: hatching success, a measure of the proportion of eggs laid that hatched, and 

fledging success, proportion of chicks (based on hatched eggs) that successfully fledged. 

Distinction between these two periods is important because of differences in energy 

demands and sources of mortality. Chicks were considered fledged if they were 

documented alive at the colony for a minimum of 15 days and were not known to perish 

afterwards. This 15-day period was based on the duration of chick-rearing reported from 

various murre colonies in the CCS and elsewhere (Boekelheide et al. 1990) and has been 
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commonly used in the CCS to quantify murre nest success (Eigner 2009; Fuller et al. 

2015).  

Time-allocation Surveys  

 Time-allocation surveys were used to make inferences about the ease of finding prey 

using a suite of metrics known to be related to foraging effort, specifically the duration 

chick-rearing pairs spend together at the colony, the duration chicks are left alone at the 

colony, the duration and success of foraging trips, and chick provisioning rates. Time-

allocation surveys required an observer to position the camera to record 12 - 24 chick-

rearing pairs simultaneously. Once positioned, the camera remained stationary for an 

entire day (from dawn until dusk). This method resulted in all focal sites being clustered 

in the same area of the colony; it is unlikely that this biased observations because these 

parameters are influenced by prey availability rather than site quality (Harding et al. 

2007; Smout et al. 2013). Time-allocation surveys began when 66% of the chicks hatched 

and continued until all chicks at focal sites left the colony as determined by nest surveys 

(approximately 3 - 4 weeks). Each year, time-allocation surveys occurred six to eight 

days apart since they required a full day in which no other surveys occurred. 

 Video recordings of each time-allocation survey were subsequently reviewed to 

quantify daily time-allocation and provisioning rates for each site using methods 

described by Parker (2005) and Eigner (2009). Data for time-allocation surveys were 

collected from the video recordings, rather than in real-time, because recordings could be 

paused and re-watched to ensure that all arrivals, departures, and chick-provisioning 

events at each nest-site were observed. During video review, the exact time of all arrivals, 
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departures, and chick-provisioning events at each nest-site was noted. A visual scan of 

each chick-rearing pair occurred every 15 minutes to confirm that arrivals and departures 

were not missed. If an arrival or departure was missed, the observer re-reviewed the 

previous 15 minutes of video to determine the exact time of the relevant change. When an 

individual briefly left its site (e.g., to kleptoparasitize a neighboring murre) but remained 

at the island, this event was not classified as a departure event. Additionally, when chicks 

were left unattended at the colony, an individual from a neighboring site would 

sometimes brood the unattended chick; although the chick was under the supervision of 

an adult, for purposes of quantifying the time-allocation of chick-rearing pairs, these 

chicks were still classified as unattended until one of their parents returned.  

Diet Surveys 

Diet surveys were used to assess variability in the composition of prey brought to the 

colony by murres during chick-rearing. Diet surveys focused on all murres within ~100 m 

of the camera system to ensure that enough detail for prey identification was recorded. 

Diet surveys required an observer to actively scan through the colony and locate adult 

murres possessing prey. Once located, the observer re-focused the camera onto the prey 

to maximize recording of morphological characteristic needed for identification. Surveys 

began when 10% of eggs had hatched and continued until 90% of the chicks had fledged, 

as determined by nest surveys. 

 In 2007 through 2009, the schedule of surveys followed a specific protocol developed 

by the Common Murre Restoration Project in central California (Eigner 2009; Fuller et 

al. 2015). This called for two types of surveys: entire-day surveys (06:00 - 20:00 PDT) 
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that occurred three times during the chick-rearing period at weekly intervals, and two-

hour surveys that occurred daily (except one day per week when time-allocation surveys 

occurred). Daylight hours were broken into seven 2-hour intervals (beginning at 06:00 

and ending at 20:00) and were surveyed on a rotating schedule such that each interval 

was sampled approximately every seven days. In 2010, this protocol was modified to 

maximize the total number of prey identified and, since prey deliveries were most 

frequent between 06:00 and 08:00 (Golightly and Schneider 2016), diet surveys in 2010 

through 2016 occurred six days per week during this time interval. Each prey observed 

during diet surveys were recorded and archived as individual video files to ease 

identification. 

 Video of each prey delivery was subsequently reviewed and identified to the most 

specific level possible using characters such as fin placement, distance between fins, tail 

shape and body shape based on descriptions provided by guides specific to fishes and 

murre prey items of the Pacific Coast (Eschmeyer and Herald 1983; Papish 1996; Eigner 

2009; Orben 2009; Golightly and Schneider 2016). Video facilitated accurate 

identification of prey as they could be viewed from various angles, video could be 

reviewed frame by frame, and experts could be consulted to confirm ID of each prey 

type. During the identification process, coordinates (x,y) indicating the position of each 

prey were noted (these coordinates are exact and built into the monitoring system). If 

more than one prey was observed at the same location during a survey, these prey were 

directly compared to guarantee that each prey observation was unique.  
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Statistical Analyses 

All analyses were done in R (R Development Core Team 2017). If data did not meet 

the assumptions of parametric tests described below (e.g., normality and homoscedacity), 

bootstrapping techniques were used to assess statistical significance and, if necessary, 

homogenous subsets were identified using a Sequential Bonferroni Correction. Unless 

otherwise noted, all results are reported as 𝑥̅ ± 𝑆𝐸. 

Nest Phenology  

Nests for which egg lay dates were accurate to ± 3 days were used to determine if the 

average date of nest initiation varied across the 11-year period. Replacement clutches, 

sometimes initiated following failure of a first clutch, were not used in this analysis. 

Interannual variability was assessed using an analysis of variance (ANOVA) and, if 

necessary, homogenous subsets were identified using Tukey’s HSD (Tukey 1949).  

It is widely recognized that the “spring transition” to upwelling favorable conditions 

has physical and ecological significance and various approaches for tracking this 

phenomenon have been proposed including those based strictly on physical attributes 

associated with upwelling (Logerwell et al. 2003; Barth et al. 2007; Holt and Mantua 

2009) as well as those that also account for biological attributes indicative of this 

transition (Peterson et al. 2011). Because of the various methods available, I determined 

the date of spring transition using two different methods: (1) a cumulative approach 

widely used by physical oceanographers to determine the date of spring transition 

(Bograd et al. 2009) based on the logic that this phenomena has cumulative effects on the 

ecosystem and (2) a running mean approach that used a 7-day centered running mean to 
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highlight underlying trends occurring at a scale matching the lag in time between the 

onset of upwelling and development of phytoplankton blooms (4-8 days;(Hutchings et al. 

2009; Thompson et al. 2012; Kämpf and Chapman 2016). These blooms form the base of 

the food web and are essential for energy transfer to higher trophic levels.  

Both the cumulative and running mean approach rely on the same wind-derived 

coastal upwelling index (UI), an estimate of the amount of water being upwelled or 

downwelled (m3 s-1) for a 100 m segment of coastline (Bakun 1973; NOAA 2018), to 

identify the date of spring transition. Because the timing of this transition varied 

latitudinally (Bograd et al. 2009), only UI data from the latitude nearest Castle Rock 

(42oN, 125 oW) was used. The cumulative approach of determining the date of spring 

transition required that the daily mean UI be integrated beginning on January 1st through 

the end of the year. The date of spring transition was identified as the date when this 

cumulative upwelling index (CUI) reached its minimum value, representing the point at 

which upwelling became net positive each year. Because the UI was derived from 

localized wind patterns, there was substantial day-to-day variability that masked lower 

frequency transitions from downwelling dominated to upwelling dominated. The running 

mean approach required that the UI be averaged using a 7-day running mean and then 

each day be classified as exhibiting moderate to strong downwelling (UI < -10), 

transitional (-10 < UI < 10), or moderate to strong upwelling (UI > 10). The date of 

spring transition was identified as the date in which moderate to strong upwelling 

occurred for at least 10 days and was not interrupted by a transition to moderate to strong 

downwelling for a sustained period (> 7 days). The logic behind these cut-off dates was 
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that 10 days of moderate to strong upwelling should be sufficient to allow the transfer of 

energy from a phytoplankton bloom to primary and secondary consumers (Hutchings et 

al. 2009; Thompson et al. 2012; Kämpf and Chapman 2016) and that this transfer of 

energy to higher trophic levels would only be halted if the nutrient supply to 

phytoplankton was interrupted for longer than one week; in the absence of nutrients, 

phytoplankton abundance can decline as fast as it increased (Cloern 1996; Saito et al. 

2006). 

Once the date of spring transition was identified using both the cumulative and 

average approached summarized above, this relationship between this date and the nest 

initiation by murres was assessed using a linear regression. For this analysis, the date of 

first nest was used rather than the average initiation date because the date of first nest was 

known to  ± 1 day and was, therefore, more accurate. 

Reproductive Success 

The sampling protocol for nest surveys ensured that most nests were detected in less 

than 48 hours from their initiation and, once detected, were observed every other day for 

the duration of the nesting attempt. As such, it was not necessary to adjust estimates of 

success to account for nests that may have failed prior to detection or nests that were not 

able to be checked at regular intervals. Thus, the probability of successful nesting, 

hatching, and fledging for each year was estimated by fitting generalized linear models 

(GLM) to binomial survival data (0 = failure, 1 = success) using a logit link function 

(Aebischer 1999; Johnson 2007; Post van der Burg et al. 2010). The Log Odds estimate 

of success from these GLMs was back transformed to probability of success and 



16 

homogenous subsets were identified using Tukey’s HSD. These estimates excluded 

replacement nests which, for Common Murres, are uncommon and typically fail 

(Manuwal et al. 2000; Golightly and Schneider 2016). For nests that failed, the stage and 

cause of failure was quantified to identify drivers of nest failure.  

Foraging Effort 

Annual variation in foraging effort and success, in terms of providing food to chicks, 

was assessed using a suite of behaviors. Specific parameters of interest were the 

proportion of daylight hours when both members of chick-rearing pairs were present at 

the colony; the proportion of daylight hours when chicks were left alone at the colony; 

the duration of each trip to sea; the percent of trips to sea that individuals successfully 

procured prey for their chick; and the frequency of chick provisioning. ANOVAs were 

used to test for interannual variability and homogenous subsets were identified using 

Tukey’s HSD. To determine if the frequency of chick provisioning was related to the 

probability of chick mortality, each chick-rearing pair was categorized as successful or 

unsuccessful in fledging a chick (based on nest survey data) and a logistic regression was 

used. 

Prey Composition 

To quantify the compositional dissimilarity of the prey community across years, a 

non-metric multidimensional scaling based on a Bray-Curtis dissimilarity matrix was 

used (Bray and Curtis 1957; Beals 1984). Each day with at least 10 identified prey were 

included. Unidentified prey were excluded from this analysis because the ability to 

identify prey was limited only by the duration of observation and resulting zoom level 
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achieved by the camera system rather than the actual identity of the prey and unidentified 

prey should not have bearing on prey composition in this study. Species-specific counts 

were standardized by the total prey identified per day because the total number of prey 

observed was a sampling artifact rather than reflective of actual differences in the prey 

community (Clarke and Warwick 2001). Additionally, relative abundance was not 

transformed and the contribution of rarer species was not amplified (Clarke and Warwick 

2001). A stress plot was used to validate that the ordination was successful in preserving 

the original dissimilarities of the multidimensional data. A Similarity Percentage 

(SIMPER) analysis was then used to determine which prey types drive annual variation 

diet (Clarke 1993). To identify homogenous subsets, a Permutational Multivariate 

Analysis of Variance (PERMANOVA) with 10,000 iterations was used (Anderson and 

Walsh 2013).  
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RESULTS 

The 11-year time series of Common Murre reproductive performance, foraging effort, 

and prey composition was successfully compiled from nest, time-allocation, and diet 

surveys at Castle Rock. However, in 2012 the video monitoring system failed early in the 

nesting season so only the earliest egg lay dates were recorded and only the date of the 

first egg observation could be determined in 2012.  

Reproductive Performance 

The timing and outcomes of 856 nests (86 ± 8 pairs per year) were determined 

between 2007 and 2017. The timing of nest initiation was different between years 

(ANOVA: F9,846 = 190.5, p < 0.001), with average egg lay date having a 25-day range 

over the 11 years (Figure 2); the earliest nest initiation occurred on 27-April in 2008 and 

latest nest initiation occurred on 22-May in 2010 and 2017 (Figure 2). Although the 

average date of nest initiation in 2012 could not be quantified due to premature failure of 

the camera system, the first egg was not observed until 15-May which was two days later 

than the first egg in 2017 and thirteen days later than the first egg in 2010; this indicated 

that the average date of nest initiation would have been later in 2012 relative to all other 

years. Nest initiation was earlier in years when the seasonal onset of upwelling happened 

early and was later in years when the transition was relatively late based on dates 

determined by both the cumulative approach (Figure 3A; Linear regression: y = 0.190x + 

110.0, R2 = 0.571, F1,9 = 12.0, p = 0.007) and the average approach (Figure 3B; Linear 

regression: y = 0.204x + 108.5, R2 = 0.704, F1,9 = 17.3, p = 0.001). 
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Except for 2016 and 2017, nests initiated by murres at Castle Rock were relatively 

successful and interannual variability in success was minimal (Figure 4). For all years 

combined, nest success averaged 60.4% (95% CI: 57.1 - 63.3%), hatching success 

averaged 73.6% (95% CI: 70.6 - 76.5%), and fledging success averaged 82.2% (95% CI: 

79.1 - 85.1%). Fledging success tended to be equal to or greater than hatching success 

except in 2016 and 2017 when chick mortality was 73.3% and 99.9%, respectively 

(Figure 4). Across all years, 226 nests failed at the egg stage and the primary causes of 

failure were abandonment (24%), failure to hatch despite incubation (19%), and 

disappearance of the egg (57%). An additional 113 nests failed at the chick stage, with 1 

instance of starvation directly observed (0.8%), chicks observed dead at their nest (30%), 

and disappearance of the chick (69%). Based on all formal surveys and incidental 

observations of the colony, predation of eggs was never witnessed but there have been a 

limited number of instances in which chicks were observed being predated by Western 

Gulls (Larus occidentalis).  
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Figure 2. The timing of nest initiation by Common Murre at Castle Rock from 2007 to 

2017. These calculations only included first clutches (no replacement nests) and the date 

of initiation was accurate to ± 3 days. Circular markers indicate the mean and error bars 

represent the standard error. Letters adjacent to each marker indicate homogenous subsets 

and sample sizes are indicated above each year. 
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(A)

 
(B)

 
 

Figure 3. Relationship between the date of first egg observation at Castle Rock and the 

seasonal onset of upwelling based on (A) the cumulative approach for determining the 

date of spring transition and (B) the average approach for determining the date of spring 

transition. These calculations only included first clutches (no replacement nests) and the 

date of first egg observation was accurate to ± 1 day. Solid lines represent the linear 

relationship described by the equations at the top of each figure and shaded areas 

represent the 95% confidence limit for each line.  
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Figure 4. Reproductive success of Common Murre nesting at Castle Rock from 2007 to 

2017 as estimated by fitting a generalized linear model to binomial survival data. The 

proportion of nests that were successful (nest) are depicted for each year. Circular 

markers indicate the mean and error bars represent the 95% confidence intervals. 

Estimates of hatching (egg) and fledging (chick) success, the two components of nest 

success, are also depicted. Letters indicating homogenous subsets as determined by 

Tukey’s HSD were indicated above the data and color coded for clarity. Replacement 

nests were not included in these calculations. 

 

Foraging Effort 

To quantify behaviors indicative of foraging effort by murres, 159 chick-rearing pairs 

were observed between 2007 and 2017. Over this 11-year period, 476 hours of video 

from 24 observation days were reviewed for these purposes. In 2016, only the earliest of 

the time-allocation surveys occurred as many chicks died within days of hatching and 

chick-rearing pairs were not dense enough for time-allocation surveys. In 2017, all chicks 

died within a few days of hatching (oldest chick was 8 days) and there were no chick-

rearing pairs available for time-allocation surveys.  
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All behaviors associated with forging effort varied as a function of year. The percent 

of daylight hours that chick-rearing pairs spent co-attending their chick at the colony was 

lowest in 2007, 2008, and 2016, averaging 1.3%, and was greatest in 2014 at 5.6% 

(Figure 5; Bootstrapping: trials = 10000, F8,150 = 17.8, p < 0.001). The percent of daylight 

hours that chicks were left unattended at the colony was greatest in 2007 at 24.9% and 

relatively minimal for all other years, ranging between 0.01 - 7.2% (Figure 5; 

Bootstrapping: trials = 10000, F8,150 = 8.5, p < 0.001). The average duration of at-sea trips 

ranged from 2.1 hours in 2013 to 6.7 hours in 2017 (Figure 6; Bootstrapping: trials = 

10000, F8,150 = 8.3, p = 0.004). The percent of trips to sea that murres successfully 

returned with prey for chicks approached 100% in 2013 and remained at or above 90% in 

all years except 2007 and 2016, when trip success was 85% and 66%, respectively 

(Figure 7; Bootstrapping: trials = 10000, F8,150 = 5.5, p = 0.026).  

The number of prey that chicks consumed in a day varied from year-to-year 

(ANOVA: F8,150 = 10.48, p < 0.001), ranging from 1.9 prey per day in 2016 to 6.4 prey 

per day in 2013 (Figure 8). As the number of prey fed to chicks decreased, there was a 

corresponding increase in probability of chick fatality presumably due to starvation 

(Figure 9; Logistic regression: z-stat = 3.95, df = 150, p < 0.001); based on this 

regression, chicks must be fed a minimum of 1.8 prey per day for survival probability to 

be 75%.  
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Figure 5. The amount of time that chick-rearing murres spent together with their chick 

(co-attendance) and the amount of time that chick-rearing murres left chicks unattended 

(chick alone) at Castle Rock from 2007 through 2017. Circular markers indicate the mean 

and error bars represent the standard error. Letters adjacent to each marker indicate 

homogenous subsets and sample sizes are indicated above each year.  

 

 
 

Figure 6. Duration of trips to sea made by chick-rearing murres at Castle Rock from 2007 

through 2017. Circular markers indicate the mean and error bars represent the standard 

error. Letters adjacent to each marker indicate homogenous subsets and sample sizes are 

indicated above each year.  
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Figure 7. Percent of trips to sea that chick-rearing murres successfully returned from 

foraging trips with prey for their chick at Castle Rock from 2007 through 2017. Circular 

markers indicate the mean and error bars represent the standard error. Letters adjacent to 

each marker indicate homogenous subsets and sample sizes are indicated above each 

year.  

 
 

Figure 8. Frequency of chick provisioning at Castle Rock from 2007 through 2017. 

Circular markers indicate the mean and error bars represent the standard error. Letters 

adjacent to each marker indicate homogenous subsets and sample sizes are indicated 

above each year.  
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Figure 9. Occurrence of chick mortality (0 = died, 1 = survived) as a function of chick 

provisioning rate at Castle Rock. Points are offset from each other in respect to the y-axis 

to avoid over plotting. 

 

Prey Composition  

Between 2007 and 2017, 600 hours of diet surveys were conducted. During these 

surveys, 5166 prey deliveries were observed and 3964 of these were subsequently 

identified. In total, 96.8% of prey were classified at least to family, 31% were further 

classified to genus, and 7.8% were identified to species. In all, 20 distinct prey types were 

identified (range: 12 - 15 per year). Despite a diversity of prey, 87.2% of all prey 

identified were one of three prey types: smelt (Osmeridae), rockfish (Sebastes sp.), and 

salmon (Salmonidae; Figure 10). Until 2016, smelt (59.1% of prey) and rockfish (23.3% 

of prey) were the two most common prey types observed each year. However, in 2016 

and presumably 2017 northern anchovy (Engraulis mordax) became more prevalent in 

the diet.  
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Prey composition varied across the 11-year study period (PERMANOVA: trials = 

10000, F8,134 = 5.07, p < 0.001). The year with the most compositionally distinct prey was 

2009, which was the only year that rockfish were regularly missing (54% of surveys 

reported 0 rockfish in 2009) while smelt dominated and could account for more than 90% 

of prey delivered on a given day (Figure 11). All other years were compositional variants 

of 2008 and there were three primary variants on the prey community observed in 2008: 

one that was very typically composed of smelt, rockfish, and salmon (2010); one that was 

composed of smelt and rockfish but lacked salmon and had a greater proportion of squid 

(2011, 2014); and one that was dominated by anchovy and lacked rockfish and salmon 

(2016; Figure 11). Intermediate years were 2007, 2013, 2015 (Figure 11).  

 

 
 

Figure 10. Composition of prey delivered to chicks at Castle Rock by Common Murre. 

Unidentified prey were excluded, the number of prey identified each year is indicated by 

the numbers above each bar. 
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Figure 11. Nonmetric multidimensional scaling (NMDS) of the prey community 

accessible to Common Murres feeding chicks at Castle Rock from 2007 to 2016. Next to 

each year in parentheses is the number of surveys per year included in this analysis and 

letters that indicate homogenous subsets. Observations from 2017 were excluded due to 

limited observations of prey in that year. 
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DISCUSSION 

Castle Rock is one of the largest murre colonies in the CCS and is distant from other 

colonies where similar studies have been undertaken. Thus, information gained from this 

study enhances our understanding of murre reproductive performance, time allocation, 

and chick diet in an area of the CCS where there is currently no baseline understanding of 

these parameters. The long-term nature of this dataset allowed for the observation of a 

representative range of prey conditions for murres nesting at Castle Rock. As predicted, 

the onset of upwelling was positively related to the date of nest initiation for both 

methods used to identify the seasonal transition to upwelling favorable conditions. 

Reproduction was relatively successful in all years except when prey were more difficult 

to obtain, as indicated by the suite of metrics that reflect foraging effort. Specifically, 

metrics indicative of foraging effort usually varied in a predictable way: in instances of 

increased foraging effort, the duration of co-attendance was minimized, the duration of 

chicks being left alone was increased, the duration of foraging trips was increased, the 

success of foraging trips decreased, and the provisioning rate of chicks decreased. This 

increased foraging effort coincided with years of low reproductive success. This study 

highlights the need of chicks to eat frequently and, if prey were not delivered at least 2 

times per day, the reproductive success dropped below average. Furthermore, it seemed 

that prey availably, rather than prey composition, influenced the reproductive success of 

murres. This is confounded because years of poor reproduction overlapped with 

compositional shifts towards anchovy. However, anchovy is high in energy content and 
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murres elsewhere have reproduce successfully even when anchovy was a predominant 

prey delivered to chicks (Ainley et al. 1990; Boekelheide et al. 1990).  

The phenology of nesting by many seabirds, including murres, often matches 

seasonal increases in productivity of the local environment to ensure synchrony between 

the most energetically demanding phases of the seabird lifecycle and peak availability of 

their prey (Grémillet and Boulinier 2009; Reed et al. 2009; Watanuki et al. 2009). In the 

CCS, seasonal increases in productivity occur in late winter and early spring due to 

changes in prevailing wind patterns that cause deep, nutrient-rich water to reach the 

surface. The timing of nest initiation by murres at Castle Rock was positively related to, 

and followed, this seasonal increase of marine productivity. The delay between upwelling 

and nest initiation averaged 48.9 to 52.5 days based on the cumulative and average 

approach of identifying the date of spring transition, respectively. This delay likely 

results from a lag between environmental inputs needed for increased productivity and 

the transfer of this energy to higher trophic levels (Cushing 1978; Croll et al. 2005; 

Thompson et al. 2012). As the ocean continues to warm and alter the seasonal timing and 

strength of winds that drive upwelling in the CCS (Xiu et al. 2018), differential changes 

among trophic levels may result in desynchronization of seabird reproduction and the 

peak availability of their prey (Thackeray et al. 2010; Keogan et al. 2018).  

Reproduction was typically successful at Castle Rock between 2007 and 2017, with 

prey abundance being the primary factor influencing success. Although the majority of 

murres successfully produced chicks in most years, murres nesting here maximized the 

time they spend searching for prey, even the best years. At Castle Rock, the amount of 
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time chick-rearing pairs spent together at the colony never exceeded 5% and chicks were 

frequently left unattended as both parents searched for prey at-sea. This is in contrast to 

other well-studied colonies where chick-rearing murres typically spent at least 10% of the 

day together at the colony (Burger and Piatt 1990; Uttley et al. 1994; Zador and Piatt 

1999; Davoren and Montevecchi 2003; Harding et al. 2007) and rarely left chicks 

unattended except in times of extreme prey scarcity (Ainley et al. 2002; Harding et al. 

2007) often coincident with widespread starvation and chick mortality (Ashbrook et al. 

2008).  

Additional evidence that murres nesting at Castle Rock have currently approached 

their limit to behaviorally compensate for further reductions in prey is provided by 

observations from 2007, 2016, and 2017. In 2007, chick-rearing murres left chicks 

unattended for 25% of daylight hours and foraging trips were 3 times longer than the year 

with the shortest foraging trip. The majority (88%) of trips to sea ended with prey being 

delivered to chicks and chick-rearing pairs were able to maintain this level of effort for 

the duration of chick-rearing. In 2016, foraging duration was similar to 2007 with 

relatively long foraging trips (6.2 hours per trip); despite this similarity in duration, the 

success of trips was reduced in 2016 relative to 2017, with just 66% of trips to sea ending 

with prey delivery to chicks. In these conditions, only 25% of chick-rearing pairs were 

able to maintain this level of effort for the duration of chick-rearing. In 2017, many 

breeding pairs abandoned their nest before eggs hatched and chick-rearing adults were 

unable to find enough food to keep chicks alive for more than a few days; the oldest 
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chick observed was 8 days and multiple chicks were observed dying at their nest 

presumably due to starvation.  

Although prey availability in the waters surrounding Castle Rock was characterized 

by identifying prey returned to the colony by chick-rearing murres, this observation is 

relevant to other marine predators that live and reproduce in this area of the CCS. It is 

likely that there is great overlap in the prey base and foraging environment of murres and 

other seabirds, especially pursuit-diving piscivores such as other Alcids (guillemots, 

puffins, and some auklets) and cormorants. Sympatrically nesting seabirds experience 

similar foraging conditions because the distance they can travel from the colony to forage 

is limited by their need to incubate eggs and feed chicks (Orians and Pearson 1979; 

Elliott et al. 2009; Fauchald 2009). Although the maximum foraging range is species-

specific, physical adaptations of diving seabirds such as Alcids and cormorants can have 

energetic trade-offs and limit their ability to fly long distances (Pennycuick 1987). Like 

murres, many piscivorious species nesting in the CCS opportunistically capture prey, 

which leads to dietary overlap as prey composition is determined by availability (Ainley 

et al. 1990; Forero et al. 2004; Gladics et al. 2014; Webb and Harvey 2014). Furthermore, 

prey tend to concentrate in specific areas where ocean productivity is greatest (Bost et al. 

2009; Fauchald 2009; Bouchet et al. 2015). This aggregation of prey resources causes 

seabirds to forage in multi-species feeding flocks, further facilitating overlap of their prey 

base (Diamond 1983) despite some specialization (Ainley et al. 1990). Based on long-

term observations at the Farallon Islands, the diets of piscivorious species can overlap 

extensively, especially in years when upwelling is strong and prey are abundant (Ainley 
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et al. 1990; Ainley et al. 1996; Ainley et al. 2005). Because sympatrically nesting 

seabirds rely on the same prey community, observations of murres foraging effort and 

fledging success can provide insights into the overall ability of a colony to meet the 

energy needs of other nesting seabirds; in years when murres have difficulty obtaining 

adequate prey for chicks, it is likely that various other seabird species nesting at this 

location also struggle to feed their young. 

This baseline characterization of murre behavior at Castle Rock indicates that the 

energy required to support nesting of an estimated 238,000 murres and thousands of other 

seabirds almost matches the energy available within flight distance of this breeding 

colony (corrected by the standard factor of 1.67 for murres to account for absent 

breeders;(Carter et al. 2001; Thomas and Lyons 2017). Any event that shifts this balance 

could result in large-scale reproductive failure of seabirds nesting at Castle Rock similar 

to 2016 and 2017. A trend analysis of murres nesting at Castle Rock estimated their 

abundance increased at an average rate of 6.9% per year between 2007 and 2014 (Barton 

et al. 2017). If this growth trajectory has continued since 2014, this could partially 

explain the widespread failure observed in recent years. Because Castle Rock is one of 

the most populous seabird breeding colonies in the CCS and provides habitat for a major 

proportion of murres (and other seabirds) that nest in the CCS, consecutive years of 

failure at Castle Rock could potentially impact seabird abundance across the CCS.  

In addition to improving understanding of population dynamics and potential 

conservation needs of seabird populations nesting in the CCS, studies at Castle Rock can 

improve knowledge of the mechanisms by which apex predators survive and reproduce 
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even when prey become scarce (Bolnick et al. 2003). As indicated earlier, Castle Rock is 

distinct from other well-studied colonies in the CCS because, currently, food limitation 

and bottom-up processes drive the reproductive success of seabirds nesting there. 

Because prey available to murres nesting at Castle Rock is, in most years, just enough to 

support successful reproduction, studies investigating of the extremes of behavioral 

flexibility to compensate for scarce prey can occur at this location. Related to this, rarely 

reported behaviors including chicks left alone at the colony, conspecific attacks on 

chicks, and intraspecific kleptoparasitism can be better understood.  

Studies at Castle Rock are also essential to understanding variability in the preyscape 

across the CCS. When compared with long-term studies of murre diet at other locations 

in the CCS, prey composition near Castle Rock was distinct. Smelt and rockfish 

dominated murre diet at Castle Rock. Murres in central California typically consume 

Northern Anchovy, other clupieds, and rockfish (Ainley et al. 1990; Roth et al. 2008; 

Eigner 2009). In fact, the prey community at Castle Rock was more like areas north of 

Point Blanco, based on reports from at Yaquina Head during the same period (Gladics et 

al. 2014; Suryan et al. 2014; Gladics et al. 2015). This was especially true in 2010, when 

smelt and rockfish accounted for about 80% of all prey observed at both Yaquina Head 

and Castle Rock. Despite similarities between the prey communities near Yaquina Head 

and Castle Rock, there were also noticeable differences; rockfish abundance was 

generally much lower at Yaquina Head and prey types uncommon at Castle Rock 

(including herring, sardine, flatfish, and Pacific sand lance) were prevalent in the diet of 

murres at Yaquina Head (Gladics et al. 2015). The observations of chick diet at Castle 
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Rock confirm that prey communities are not homogenous between northern and central 

regions of California and diet studies at Castle Rock enhance understanding of both 

spatial and temporal variability in prey composition across the CCS. 

Conclusions 

Ultimately, this study provided a robust understanding of a previously unstudied 

region of the CCS in terms of the ability of murres, and potentially other seabirds, to 

produce young, how hard they must work to do so, and what prey types are available to 

them. This information is essential to accurately assess the population health of murres 

nesting in the CCS and to better understand temporal and spatial heterogeneity in the 

preyscape of the CCS. As predicted, the timing of upwelling accounted for 70% of the 

variability in the nesting phenology of murres and provides evidence that murres are 

sensitive to and can alter the timing of nesting to match peak availability of prey. Despite 

timing nest initiation to coincide with greater abundance of prey, availability was barely 

sufficient to meet the needs of the colony and in all years of this study murres neared the 

limits of their ability to behaviorally compensate; crossing this threshold resulted in 

widespread nest abandonment and chick starvation. Because of this fine balance that 

currently exists between prey availability and the needs of seabirds nesting at Castle 

Rock, even small shifts that cause demands to exceed availability will likely  result in 

large-scale reproductive failure of seabirds nesting at Castle Rock. 
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